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Response to Reviewers: Reviewer #1: The manuscript by Piccolo et al presents a new tool for comparing
classification algorithms in a consistent interface.  A key strength
of the current approach is that it uses Docker containers so that once
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a user has installed Docker, a wide variety of algorithms from
different machine learning toolboxes can be compared.  The typical
user for this package would be someone new to machine learning wishing
to compare a wide range of algorithms on their data.

>> Thank you for taking the time to write this review and for providing this positive
feedback!

I am grateful to the authors for providing online resources; in
particular the Code-Ocean capsule worked for me (after first logging
in; presumably anonymous access is not possible), and all the figures
from the manuscript were regenerated from the analysis results.  (But
if the online Rmd is to be updated, the output figures could be made
taller as some of the y-axes were too squashed to see the range of
data, e.g. I could not see the negative, red, differences for Figure 5
online).

>> Yes, as far as we understand it, anonymous access is not possible via Code
Ocean. Thank you for the feedback about some of the figures being squashed. This is
true for the HTML output file, produced from the Rmd file. However, we don't know of a
way to control those dimensions. If you look at the right-hand panel of the output in
Code Ocean, you should be able to see PDF files that are generated from the R code.
The names of those files coincide with names specified in the Rmd file, so you should
be able to match those and see what they look like in the correct dimensions.

What I couldn't do however, was to re-run the analysis.
https://github.com/srp33/ShinyLearner/blob/master/Demo/Execute_Algorithms.ipynb
lists the script, and it looks appropriate, but as I'm already late
with this review, I'll have to assume it works.  (How long does it
take to execute?)  Could it also be hosted on CODE OCEAN, or would it
take too long?

>> It takes several days for this to execute. Although Code Ocean does not put hard
limits on execution times, it's not really designed for such long-running executions.

The text from
https://github.com/srp33/ShinyLearner/blob/master/Word_of_Caution.md
is important and should be copied into the discussion section of the
paper.

>> Thank you for this suggestion. We have added a slightly modified version of this
text to the end of the Discussion section in our manuscript.

Although all the code is available on github, I think an archive of
the github repo should be stored on Zenodo to give a permanent DOI of
the repository when (assuming) the manuscript is published.

>> We have created Zenodo archives of the relevant GitHub repositories for this tool
and have added the DOI for these archives to the manuscript under "Availability of
source code and requirements".

The online tool http://bioapps.byu.edu/shinylearner/ looks great, but
again due to being late with this review, I didn't get time to run it
yet for myself.  It would of course help for the very first time that
there is a demo where I could download some data first (e.g. the Iris
dataset, or MNIST) to work through this.  Am I right in assuming that
the role of the GUI is to build the eventual docker command to then be
run locally?

>> You are correct that the role of the GUI is to build the eventual Docker command,
which would be run locally. The GUI provides a link to a page on our GitHub site
(https://github.com/srp33/ShinyLearner/blob/master/InputFormats.md), which describes
input formats that can be used and provides example data files.
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Minor:

I found it confusing to constantly flip between the main and
supplementary figures.  If a figure is important, please could it be
folded into the main document?  The first figure reference is on line
104, and that is to S1 (showing the docker command line invocation),
rather than Figure 1 of the paper.

>> In the main part of the manuscript, we included what we thought would be figures
that are most interesting to readers and relegated the remaining figures to the
supplementary material. It just happened that the first figure we referenced was a
supplementary figure, but the order in which the figures are mentioned does not
necessarily indicate the figure's importance (as with any paper). Having said that, we
can see the value in including the first supplementary figure in the main body, and we
have made that change. When submitting our updated manuscript, we have uploaded
the figures as separate files.

line 42: SUPPORT --> REQUIRE

>> This change has been made.

Is figure 2 required?  It was obvious from figure 1 (to me at least)
that the HoeffdingTree and decision_tree algorithms were lagging
behind the others.

>> This figure has been moved to the Supplementary Material. We feel that it will be
useful to some readers, even though it overlaps somewhat with the other figure.

lines 281-284: You show here that there are a few differences between
algorithms that should be working the same.  Did you explore why there
were small differences?  Parameter settings or initialisation methods?
(I'm not surprised there are small differences, but thought you could
explain them.)

>> We have added the following text for clarification: "For both of these algorithms, the
available hyperparameters as well as options that users can select are considerably
different between the underlying machine-learning libraries."

Figure 7: what classifier was used to do this analysis?

>> We have revised the caption for this figure to indicate that all 10 classification
algorithms were used and that we averaged the results across these.

In the discussion, (line 389-396), six reasons supporting use of
ShinyLearner are presented.  I am convinced of the first two reasons,
but I think most competent programmers would feel that they could also
investigate points 3--6 in their own environment.  Unless of course
you are arguing that only ShinyLearner provides the wide diversity of
algorithms that is absent in one environment (like R or Python).
However, if you are to make this case, I think you need to point out
specific examples of e.g. what classes of methods (rather than
implementations) are missing e.g. in R or Python.  My hunch, but happy
to be proven wrong, is that R and Python each provide pretty much
close to a full toolkit of machine learning methods.

>> To address these questions, we have added the following statement to the
manuscript: "Although many of these tasks could be performed by a researcher who
has programming expertise, care must be taken to ensure that the steps are performed
in a robust manner (e.g., not mixing training and test sets in nested validation). In
addition, we hope ShinyLearner will increase the efficiency of such benchmark studies
by reducing duplicate efforts."

Figure S1: it looks like you are punching holes from Docker into the
user's directory.  I think you need to explain any potential security
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risks here.

>> This should not be a security concern. To share data between the host operating
system and the container, the user executing the container must have permission to
read and write data in the host directories. Using commands such as those
recommended by our GUI will ensure that the container can only read/write files for
which the user has permission. There are other potential security concerns with
Docker, but we feel that a discussion of those topics is outside the scope of this
manuscript.

Figure S2: explain vertical dotted lines in legend.

>> We have added this to the caption.

Figure S3 (and S4): Are the Coefficients of Variation simply (s.d. / mean) or
have they been multiplied by 100 to be a percentage?

>> The Coefficient of Variation is often expressed as a percentage in academic papers.
We have modified the figure captions to clarify that these are percentages.

Figure S8: what does color denote?

>> We have clarified this in the caption.

Figure S10: Took me a while to work out the three coloured curves are
for the three patients; perhaps rework last sentence of legend to make
this clearer.

>> We have clarified this in the caption.

The word "Shiny" in the title should be explained somewhere to refer
to the Shiny R package for making GUIs.

>> We have modified the text to explain this.

Stephen Eglen

Reviewer #2: The authors present a very compelling tool that allows researchers to
compare and benchmark algorithms across various packages regardless of their
design. Shinylearner also provides a simple web interface that allows users to easily
generate Docker commands that anyone can execute (assuming they have a basic
knowledge of Docker).

I found the rationale of the paper to be very clear and coherent. The authors make a
clear case for the need for benchmarking, especially when comparing disparate
algorithms and their various software implementations, especially from the lens of
applying supervised learning to biomedical studies.

ShinyLearner is modular and extensive, and language agnostic, making it widely useful
to a broad community of researchers. It also allows for diverse inputs and standardizes
outputs. By running all benchmarks inside a container, it removes the challenges of
dealing with complex dependencies, especially for users that may not be technically
savvy, all the while not building out a black box. It supports a large number of
classification algorithms, has gpu support and is already set up to be sustainable.

>> We thank the reviewer for these positive and encouraging comments!

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No
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Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 

Classification algorithms assign observations to groups based on patterns in data. The machine-learning 

community have developed myriad classification algorithms, which are employed in diverse life-science 

research domains. When applying such algorithms, researchers face the challenge of deciding which 

algorithm(s) to apply in a given research domain. Algorithm choice can affect classification accuracy 

dramatically, so it is crucial that researchers optimize these choices based on empirical evidence rather 

than hearsay or anecdotal experience. In benchmark studies, multiple algorithms are applied to multiple 

datasets, and the researcher examines overall trends. In addition, the researcher may evaluate multiple 

hyperparameter combinations for each algorithm and use feature selection to reduce data dimensionality. 

Although software implementations of classification algorithms are widely available, robust benchmark 

comparisons are difficult to perform when researchers wish to compare algorithms that span multiple 

software packages. Programming interfaces, data formats, and evaluation procedures differ across 

software packages; and dependency conflicts may arise during installation. To address these challenges, 

we created ShinyLearner, an open-source project for integrating machine-learning packages into software 
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containers. ShinyLearner provides a uniform interface for performing classification, irrespective of the 

library that implements each algorithm, thus facilitating benchmark comparisons. In addition, 

ShinyLearner enables researchers to optimize hyperparameters and select features via nested cross 

validation; it tracks all nested operations and generates output files that make these steps transparent. 

ShinyLearner includes a Web interface to help users more easily construct the commands necessary to 

perform benchmark comparisons. ShinyLearner is freely available at 

https://github.com/srp33/ShinyLearner. 

Keywords: Machine learning, supervised learning, classification, software containers, benchmark, feature 

selection, algorithm optimization, model selection 

Background 

Classification falls under the category of supervised learning, a branch of machine learning. When 

performing classification, researchers seek to assign observations to distinct groups. For example, medical 

researchers use classification algorithms to identify patterns that predict whether patients have a particular 

disease, will respond positively to a particular treatment, or will survive a relatively long period of time 

after diagnosis[1–11]. Applications in molecular biology include annotating DNA sequencing elements, 

identifying gene structures, and predicting protein secondary structures[12]. 

Typically, a classification algorithm is “trained” on a dataset that contains samples (observations) from 

two or more groups, and the algorithm identifies patterns that differ among the groups. If these patterns 

are reliable indicators of group membership, the algorithm will be able to accurately assign new samples 

to these groups and thus may be suitable for broader application. Different research applications require 

different levels of accuracy before classification algorithms are suitable for broader application. However, 

even small improvements in accuracy can provide large benefits. For example, if an algorithm predicts 

drug-treatment responses for 1000 patients and attains accuracy levels that are 2% higher than a baseline 
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method, this algorithm would benefit 20 additional patients. Accordingly, a key focus of classification 

research in the life sciences is to identify generalizable ways to optimize prediction accuracy. 

The machine-learning community have developed hundreds of classification algorithms and have 

incorporated many of these implementations into open-source software packages[13–18]. Each algorithm 

has different properties, which affect its suitability for particular applications. In addition, most 

algorithms require hyperparameters, which alter the algorithms’ behavior and can affect the algorithms’ 

accuracy dramatically. In addition, feature-selection (or feature-ranking) algorithms can be used in 

complement to classification algorithms, helping to identify combinations of variables that are most 

predictive of group membership and aiding in data interpretation[19,20]. With this abundance of options 

to consider, researchers face the challenge of identifying which algorithm(s), hyperparameter 

combinations, and features are optimal for a particular dataset. 

To improve the odds of making successful predictions, researchers should choose algorithms, 

hyperparameters, and features based on empirical evidence rather than hearsay or anecdotal experience. 

Prior studies can provide insight into algorithm performance, but few studies evaluate algorithms 

comprehensively, and performance may vary widely for different types of data. One way to select these 

options empirically is via nested cross-validation[21]. With this approach, a researcher divides a single 

dataset into training and validation sets. Within each training set, the researcher divides the data further 

into training and validation subsets and then evaluates various options using these subsets. The top-

performing option(s) are then used when making predictions on the outer validation set. Alternatively, a 

researcher might perform a benchmark study, applying (non-nested) cross validation to multiple datasets 

from a given research domain. After testing multiple algorithms, hyperparameters, and/or feature subsets, 

the researcher can examine overall trends and identify options that tend to perform well[22,23]. With 

either approach, it is ideal to evaluate a comprehensive set of options. However, several challenges make 

it difficult to perform such evaluations effectively: 
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• Researchers may wish to compare algorithms that have been implemented in different software 

packages. Although many machine-learning packages allow users to execute algorithms 

programmatically, application programming interfaces (APIs) are not standardized, and they are 

implemented in diverse programming languages. 

• Different software implementations use different techniques for evaluating algorithm performance, 

so it is difficult to ensure that comparisons are consistent. 

• Input and output formats differ by software implementation, thus requiring custom efforts to prepare 

data and interpret results. 

• When installing the software, researchers typically must install a series of software dependencies. 

Installation requirements often differ by operating system, and versioning conflicts can arise[24]. 

To reduce these barriers, we created ShinyLearner. For this open-source project, we have integrated 

existing machine-learning packages into containers, which provide a consistent interface for performing 

benchmark comparisons of classification algorithms. ShinyLearner can be installed on Linux, Mac, or 

Windows operating systems, with no need to install software dependencies other than the Docker 

containerization software. ShinyLearner currently supports 53 classification algorithms and 1300+ 

hyperparameter combinations across these algorithms; users can perform automatic hyperparameter 

tuning via nested cross validation. In addition, ShinyLearner supports 16 feature-selection algorithms, 

enabling researchers to reduce data dimensionality before performing classification (via nested cross 

validation). New algorithms can be integrated in an extensible manner. 

ShinyLearner is designed to be friendly to non-computational scientists—no programming is required. 

We provide a Web-based tool (https://bioapps.byu.edu/shinylearner) to guide users through the process of 

creating the Docker commands necessary to execute the software. ShinyLearner supports a variety of 

input formats and produces output files in “tidy data” format[25], thus making it easy to import results 

into external tools. Even though other machine-learning packages support nested cross validation, these 
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evaluations may occur in a “black box.” ShinyLearner tracks all nested operations and generates output 

files that make this process transparent. 

Below we describe ShinyLearner in more detail and illustrate its use via benchmark evaluations. We 

evaluate 10 classification algorithms and 10 feature-selection algorithms on 10 biomedical datasets. In 

addition, we assess the effects of hyperparameter optimization on predictive performance, provide 

insights on model interpretability, and consider practical elements of performing benchmark comparisons. 

Methods 

ShinyLearner org (RRID: SCR_017608) encapsulates open-source, machine-learning packages into 

Docker images[26], which are available on Docker Hub (https://hub.docker.com/r/srp33/shinylearner/). 

Currently, ShinyLearner supports algorithms from scikit-learn, Weka, mlr, h2o, and Keras (with a 

TensorFlow backend)[13–15,27–29]. To facilitate user interaction, to harmonize execution across the 

tools, and to evaluate predictive performance, ShinyLearner uses shell scripts, Python scripts, R scripts, 

and Java code[30–32]; these are included in the Docker images. To perform an analysis, the user executes 

a shell command, specifying arguments to indicate the location(s) of the input files, which algorithms to 

use, whether to perform Monte Carlo or k-fold cross validation, etc. The analysis is executed within a 

container, and output files are saved to a directory that the user specifies. TensorFlow provides support 

for execution on graphical processing units, which requires a slightly different software configuration, so 

we provide a separate Docker image that enables this feature 

(https://hub.docker.com/r/srp33/shinylearner_gpu/). All changes to the ShinyLearner code are tested via 

continuous integration[33]; build status can be viewed at https://travis-ci.org/srp33/ShinyLearner. 

Figure 1 shows an example ShinyLearner command that a user might execute. For convenience, and to 

help users who have limited experience with Docker or the command line, we created a Web-based user 

interface where users can specify local data paths, choose algorithms from a list, and select other settings 
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(https://bioapps.byu.edu/shinylearner). After the user has made these selections, the Web interface 

generates a Docker command, which the user can copy and paste; Windows Command Line, Mac 

Terminal, and Linux Terminal commands are generated. We used the R Shiny (RRID:SCR_001626)  

framework to build this web application[34], hence the name ShinyLearner. 

ShinyLearner interfaces with each third-party machine-learning package via shell scripts wrap that around 

the software’s API. For each algorithm, one shell script specifies the algorithm’s default hyperparameters. 

In most cases, additional shell scripts specify alternative hyperparameters. The classification algorithms in 

ShinyLearner span methodological categories, including linear models, kernel-based techniques, tree-

based approaches, Bayesian models, distance-based methods, ensemble approaches, and neural networks. 

In selecting algorithms to include, we focused primarily on implementations that can handle discrete and 

continuous data values, support multiple classes, and produce probabilistic predictions. For each 

algorithm, we reviewed documentation for the third-party software and identified a representative variety 

of hyperparameter options. Admittedly, these selections are somewhat arbitrary and inexhaustive. 

However, they can be extended with additional options. We excluded some algorithm implementations 

and hyperparameter combinations because errors occurred when we attempted to execute them or because 

they failed to achieve reasonable levels of classification accuracy on simulated data. 

Additional algorithms (and hyperparameter combinations) can be incorporated into ShinyLearner. The 

sole requirements are that they have been implemented as free and open-source software and provide an 

API (that can be executed via Linux command-line scripts). Users who wish to extend ShinyLearner 

must: 

1. Identify any software dependencies that the new algorithm requires. If those dependencies are not 

currently included in the ShinyLearner image, the user must modify the ShinyLearner Dockerfiles 

accordingly. 

2. Create bash script(s) that accepts specific arguments and invoke the new algorithm. 
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3. Request that these changes be included in ShinyLearner via a GitHub pull request. 

ShinyLearner supports the following input-data formats: tab-separated value (.tsv), comma-separated 

value (.csv), and attribute-relation file format (.arff). When tab-separated or comma-separated files are 

used, column names and row names must be specified; by default, rows must represent samples 

(observations) and columns must represent features (variables). However, transposed versions of these 

formats can be used (features as rows and samples as columns); in these cases, the user should use “.ttsv” 

or “.tcsv” as the file extension. ShinyLearner accepts files that have been compressed with the gzip 

algorithm (using “.gz” as the file extension). Users may specify more than one data file as input, after 

which ShinyLearner will identify sample identifiers that overlap among the files and merge on those 

identifiers. If the user specifies, ShinyLearner will scale numeric values, one-hot encode categorical 

variables[35], and impute missing values. 

ShinyLearner supports two schemes for evaluating predictive performance: Monte Carlo cross validation 

and k-fold cross validation[36,37]. In Monte Carlo cross validation, the data are split randomly into a 

training and validation set; the algorithm is allowed to access the class labels for the training data only. 

Later the algorithm makes predictions for the validation samples, and the accuracy of those predictions is 

evaluated using various metrics. Typically, this process is repeated many times to derive confidence 

intervals for the accuracy metrics. In k-fold cross validation, the process is similar, except that the data are 

partitioned into evenly sized groups and each group is used as a validation set through rounds of training 

and testing. When multiple algorithms or hyperparameter combinations are employed, ShinyLearner 

evaluates nested training and validation sets, with the goal of identifying the optimal combination for each 

algorithm. Then it uses these selections when making predictions on the outer validation set. Nested cross 

validation is also used for feature selection; a feature-selection algorithm ranks the features within each 

nested training set, and different quantities of top-ranked features are used to train the classification 

algorithm. The feature subsets that perform best are used in making the outer validation-set predictions. 
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Hyperparameter optimization and feature selection may be combined; however, such analyses are highly 

computationally intensive for large benchmarks. 

All outputs are stored in tab-delimited files, thus enabling users to import results directly into external 

analysis tools. ShinyLearner produces output files that contain the following information for each 

combination of algorithm, hyperparameters, and cross-validation iteration: 1) predictions for each sample, 

2) classification metrics, 3) execution times, and 4) standard output, including a log that indicates the 

arguments that were used, thus supporting reproducibility. When nested cross-validation is performed, 

ShinyLearner produces output for every hyperparameter combination that was tested in the nested folds 

and indicates which combination performed best for each algorithm. 

ShinyLearner supports the following classification metrics: 

• AUROC (Area under the receiver operating characteristic curve)[38] 

• Accuracy (proportion of samples whose discrete prediction was correct) 

• Balanced accuracy (to account for class imbalance) 

• Brier score[39] 

• F1 score[40] 

• False discovery rate 

• False negative rate 

• False positive rate 

• Matthews correlation coefficient[41] 

• Mean misclassification error 

• Negative predictive value 

• Positive predictive value 

• Recall (sensitivity) 

• True negative rate (specificity) 
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• True positive rate (sensitivity) 

To calculate these metrics and to perform other data-processing tasks, ShinyLearner uses the AUC[42], 

mlr[15], dplyr[43], data.table[44], and readr[45] packages. For multiclass problems, ShinyLearner allows 

the underlying machine-learning packages to use whatever strategy they have implemented for classifying 

with multiple classes. ShinyLearner then calculates performance metrics in a one-versus-rest manner and 

averages results across the class options. 

When feature selection is performed, each algorithm produces a ranked list of features for each nested 

training set. To aid the user in understanding which features are most informative, ShinyLearner 

aggregates these ranked lists using the Borda count method[46]. These aggregate rankings are stored in 

tab-delimited output files. 

The steps of preparing the data and executing ShinyLearner for the results described in this article are in a 

Jupyter notebook (see 

https://github.com/srp33/ShinyLearner/blob/master/Demo/Execute_Algorithms.ipynb). We used the 

ggplot2 and cowplot packages[47,48] to create figures. 

Analyses 

ShinyLearner enables researchers to perform classification benchmark studies. To illustrate this 

functionality, we performed three types of benchmark: 1) basic classification with default 

hyperparameters, 2) classification with hyperparameter optimization, and 3) classification with feature 

selection. For each analysis, we used 10 classification algorithms: 

• keras/dnn - Deep neural networks (implemented in Keras/TensorFlow)[27,29,49] 

• mlr/h2o.randomForest - Random forests (implemented in mlr, h2o)[15,28] 

• mlr/mlp - Multilayer perceptron (mlr)[50] 
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• mlr/xgboost - xgboost (mlr)[51] 

• sklearn/decision_tree - Decision tree (implemented in scikit-learn)[13,52] 

• sklearn/logistic_regression - Logistic regression with the LIBLINEAR solver (scikit-

learn)[53] 

• sklearn/svm - Support vector machines (scikit-learn)[54] 

• weka/HoeffdingTree - Hoeffding tree (implemented in Weka)[14,55] 

• weka/MultilayerPerceptron - Multilayer perceptron (Weka) 

• weka/SimpleLogistic - Simple logistic regression (Weka)[56] 

In the third analysis, we used 10 feature-selection algorithms: 

• mlr/kruskal.test - Kruskal-Wallis rank sum test (mlr)[57] 

• mlr/randomForestSRC.rfsrc - Permuted random forests (mlr)[58] 

• sklearn/mutual_info - Mutual information (scikit-learn)[59] 

• sklearn/random_forest_rfe - Random forests—recursive feature elimination (scikit-

learn)[60,61] 

• sklearn/svm_rfe - Support vector machines—recursive feature elimination (scikit-learn)[61] 

• weka/Correlation - Pearson’s correlation (Weka)[62] 

• weka/GainRatio - Information gain ratio (Weka)[52] 

• weka/OneR - OneR (Weka)[63] 

• weka/ReliefF (Weka)[64] 

• weka/SymmetricalUncertainty - Symmetrical uncertainty (Weka)[65] 

In each analysis, we used 5 rounds of Monte Carlo cross validation. For the second and third analyses, we 

used 3 rounds of nested Monte Carlo cross validation for each outer round of cross validation. In the third 

analysis, we evaluated the top-ranked 1, 3, 5, 10, 15, 20, 50, and 200 features and identified the best of 
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these options via nested cross validation. In evaluating the results, we focused on area under the receiver 

operating characteristic curve (AUROC) because this metric can be applied to probabilistic predictions 

and accounts for class imbalance. 

As an initial test, we generated a “null” dataset using numpy[66]. We used this dataset to verify that 

ShinyLearner produces classification results in line with random-chance expectations when no signal is 

present. This dataset consisted of 20 numeric variables (mean = 0, standard deviation = 1) and 10 

categorical variables across 500 simulated samples. AUROC values for all classification algorithms were 

near 0.5, as expected by random chance, irrespective of whether hyperparameter optimization or feature 

selection was performed (Figure S1). 

Next, we collected 10 biomedical datasets from the Penn Machine Learning Benchmarks repository[67]: 

• Acquired Immune Deficiency Syndrome (AIDS) categorical data[68] 

• Thyroid disease[52] 

• Breast cancer[69] 

• Dermatology[70] 

• Diabetes 

• Hepatitis[71] 

• Iris[72] 

• Liver disorder[73] 

• Molecular biology (promoter gene sequences)[74] 

• Yeast[75] 

These datasets vary by number of samples (minimum = 51; maximum = 7201) and number of features 

(min = 5; max = 172). For all datasets, we converted categorical variables to multiple binary variables 

using one-hot encoding. When executing ShinyLearner, we scaled numeric values using scikit-learn’s 

RobustScaler, which subtracts the median and scales the data based on the interquartile range[76]; 
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accordingly, this method is robust to outliers. In addition, we used ShinyLearner to impute missing 

values; this method uses the median for numeric variables and the mode for categorical variables. 

Classification analysis with default hyperparameters 

Initially, we applied 10 classification algorithms to 10 biomedical datasets using default hyperparameters. 

Most algorithms made near-perfect predictions for the Thyroid, Dermatology, and Iris datasets, whereas 

predictions were less accurate overall for the remaining datasets (Figure 2). The 

weka/HoeffdingTree and sklearn/decision_tree algorithms often underperformed relative 

to the other algorithms (Figure S2). Indeed, for half of the datasets, weka/HoeffdingTree performed 

as poorly or worse than would be expected by random chance. The remaining 8 classification algorithms 

performed relatively well, but predictive performance varied considerably across the datasets (Figure S3). 

For example, the AUROC for mlr/mlp and sklearn/logistic_regression was 0.07 higher 

than the median on the AIDS dataset; the AUROC for sklearn/svm was 0.14 lower than the median. 

Across the Monte Carlo iterations for each dataset, the predictive performance of 

sklearn/decision_tree and weka/MultilayerPerceptron varied most, whereas 

weka/HoeffdingTree varied least (in part because AUROC was frequently 0.5) (Figure S4). The 

keras/dnn and mlr/h2o.randomForest algorithms took longest to execute, whereas 

sklearn/svm and sklearn/logistic_regression were among the fastest (and most accurate) 

algorithms (Figure S5). Two pairs of classification algorithms use similar theoretical approaches but were 

implemented in different machine-learning libraries; multilayer perceptron was implemented in Weka and 

mlr; logistic regression was implemented in Weka and scikit-learn. The AUROC values were strongly—

but not perfectly—correlated between these pairs of implementations (Figures S6 and S7). For both of 

these algorithms, the available hyperparameters as well as options that users can select are considerably 

different between the underlying machine-learning libraries. 
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With the exception of sklearn/decision_tree, all classification algorithms produced sample-

wise, probabilistic predictions. We examined these predictions for the Diabetes dataset and found that the 

range and shape of these predictions differed widely across the algorithms (Figure 3). Although many 

classification metrics, including AUROC, can cope with distributional differences, these differences must 

be considered in multiple classifier systems[77]. 

 

Classification analysis with hyperparameter optimization 

In the second analysis, we applied the same classification algorithms to the same datasets but allowed 

ShinyLearner to perform hyperparameter optimization via nested cross validation. As few as 2 

(mlr/xgboost) and as many as 95 (sklearn/decision_tree and 

weka/MultilayerPerceptron) hyperparameter combinations were available for each algorithm. In 

nearly every example, classification performance improved after hyperparameter optimization (Figure 4), 

sometimes dramatically. The performance improvements were most drastic for the 

weka/HoeffdingTree and sklearn/decision_tree algorithms, which often performed poorly 

with default parameters. 

ShinyLearner supports 53 hyperparameter combinations for the keras/dnn algorithm. Each of these 

combinations altered the algorithm’s performance at least to a small degree on every dataset (Figure S8). 

The Thyroid dataset varied least across the hyperparameter combinations, perhaps because the number of 

instances (n = 7200) was nearly 10 times larger than any other dataset. Generally, this algorithm 

performed better with a wider architecture containing only two layers. Having a wider structure greatly 

increases the parameter space of the network and allows it to learn more complex relationships among 

features, while limiting the network to only two layers prevents overfitting, a common problem when 

applying neural networks to datasets with a limited number of instances. In addition, adding dropout and 

L2 regularization also helps to prevent the network from overfitting. In tuning these hyperparameters, we 
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found that a smaller dropout rate, more training epochs, and a smaller regularization rate resulted in 

higher AUROC values (Figure S9). Figure S10 illustrates for the Diabetes dataset that diagnosis 

predictions can differ considerably, depending on which hyperparameter combination is used. 

Classification analysis with feature selection 

In any dataset, some features are likely to be more informative than other features. We used ShinyLearner 

to perform feature selection (via nested cross validation) before classification. In total, we evaluated 100 

unique combinations of feature-selection algorithm and classification algorithm (with default 

hyperparameters). In 44% of cases, feature selection increased the median AUROC, whereas it decreased 

AUROC in 39% of cases (Figure 5). Feature selection sometimes improved the performance of 

weka/HoeffdingTree and sklearn/decision_tree, which were the lowest performers 

without feature selection. 

Figure 6 illustrates the relative predictive ability of each combination of feature-selection and 

classification algorithms. The mlr/randomForestSRC.rfsrc and 

sklearn/random_forest_rfe algorithms performed best on average; both approaches use the 

Random Forests algorithm to evaluate feature relevance. The weka/OneR algorithm, which evaluates a 

single feature at a time in isolation, performed worst. Across the datasets, the combination of 

mlr/randomForestSRC.rfsrc (feature selection) and mlr/xgboost (classification) performed 

best. Perhaps surprisingly, the combination of sklearn/svm_rfe (feature selection) and 

sklearn/svm (classification), which are both based on Support Vector Machines, was ranked in the 

bottom quartile. 

In seeking to identify the most informative features, ShinyLearner evaluated various quantities of top-

ranked features via nested cross validation. Figure 7 illustrates the relative performance of each of these 

quantities on each dataset. In all cases but one, using one feature performed worst. Generally, a larger 

number of features resulted in higher AUROC values. However, more features sometimes decreased 
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performance. For example, on the breast-cancer dataset, the highest AUROC values were attained using 3 

out of 14 features. 

ShinyLearner can inform users about which features are most informative for classification. In the 

Dermatology dataset, these feature ranks were highly consistent across the feature-selection algorithms 

(Figure S11). The goal of this classification problem was to predict a patient’s type of Eryhemato-

Squamous disease. Elongation and clubbing of the rete ridges as well as thinning of the suprapapillary 

epidermis were most highly informative of disease type, whereas features such as the patient’s age were 

less informative. 

Discussion 

The machine-learning community has developed an abundance of algorithms and software 

implementations of those algorithms. Life scientists use these resources for many research applications. 

But they face the challenge of identifying which algorithms and hyperparameters will be most accurate 

and which features are most informative for a given dataset. Many researchers limit classification 

analyses to a single algorithm, perhaps one that is familiar to them or that has been reported in the 

literature for a similar study. Others may try a large number of algorithms; however, performing 

benchmark comparisons in an ad hoc manner requires a considerable coding effort and can introduce 

biases if done improperly. Alternatively, some researchers may develop new algorithms without 

providing evidence that these algorithms outperform existing ones. We developed ShinyLearner as a way 

to simplify the process of performing classification benchmark studies. 

ShinyLearner does not implement any classification or feature-selection algorithm; rather, it serves as a 

wrapper around existing software implementations. Currently, algorithms from Weka, scikit-learn, mlr, 

h2o, and Keras are supported in ShinyLearner. In aggregate, these algorithms represent a diverse range of 

methodological approaches and thus can support comprehensive benchmark evaluations. On their own, 
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each of the third-party tools encapsulated within ShinyLearner provides a way to optimize 

hyperparameters programmatically and perform feature selection. In addition, tools such as caret[17], 

KNIME[18], and Orange[78] provide these options. Thus, in situations where a researcher has 

programming expertise and is satisfied with the algorithms and tuning functionality available in one of 

those tools, the researcher might prefer to use these tools directly rather than use ShinyLearner. 

ShinyLearner is most useful when a researcher: 

1. wishes to compare algorithms that have been implemented in multiple machine-learning packages, 

2. does not have programming expertise, 

3. desires to perform complex operations via nested cross validation, such as evaluating different sizes 

of feature subsets, 

4. wishes to analyze algorithm performance using a tool or programming language that is different 

than was used to perform classification, 

5. wishes to gain deeper insight into decisions made during nested cross validation, and/or 

6. seeks to evaluate the tradeoff between predictive accuracy and time of execution. 

Although many of these tasks could be performed by a researcher who has programming expertise, care 

must be taken to ensure that the steps are performed in a robust manner (e.g., not mixing training and test 

sets in nested validation). In addition, we hope ShinyLearner will increase the efficiency of such 

benchmark studies by reducing duplicate efforts. 

ShinyLearner is limited to datasets that fit into computer memory. For larger datasets, frameworks such as 

Apache SystemML support distributed algorithm execution[79]; however, the number of algorithms 

implemented in these frameworks is still relatively small. 

The current release of ShinyLearner supports diverse classification algorithms and hyperparameter 

combinations; however, this collection is far from exhaustive. Using ShinyLearner’s extensible 

architecture, the research community can integrate additional algorithms and hyperparameter 
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combinations. In addition, algorithm designers can use our framework to compare their algorithms against 

competing methods and disseminate their algorithms to the research community. 

Containers provide many advantages for software deployment. Tool installation and computational 

reproducibility are easier because all software components are encapsulated within the container, and 

container images can be archived and versioned[80]. One other benefit may be less apparent: 

containerization facilitates the use of diverse programming languages. Distinct components of 

ShinyLearner are implemented in 4 different programming languages. We chose this approach because 

we determined that each language was suited to specific types of tasks. We posit that the future of 

bioinformatics development will increasingly follow this pattern. Furthermore, we advocate for the 

approach of providing a graphical user interface, such as the Web-based tool we provided for 

ShinyLearner. Such tools make it easier for users—especially those who have limited command-line 

experience—to formulate Docker commands. 

Our analysis of 10 biomedical datasets, 10 classification algorithms, and 10 feature-selection algorithms 

confirmed that the choice of algorithm and hyperparameters has a considerable impact on classification 

performance and selected features. Although some algorithms typically performed better than others, no 

single algorithm consistently outperformed any other. This finding supports the “No Free Lunch” 

theorem[81] and confirms that multiple classifier systems hold promise for aggregating evidence across 

algorithms[82]. Also importantly, algorithm performance is likely to differ according to data 

characteristics. Algorithms that perform well on “wide” datasets (many features, few samples) may not 

perform as well on “tall” datasets. Algorithms that perform well with numeric data may not perform as 

well on categorical or mixed data. These differences highlight the importance of domain-specific 

benchmark comparisons. 

Finally, we offer recommendations regarding benchmark comparisons. When performing benchmarks 

across multiple algorithms and/or hyperparameters, it is important to exercise caution in interpreting those 

results. Below are recommendations on performing benchmarks and interpreting such results: 
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• If you apply multiple algorithms or hyperparameter combinations, you should always report those 

(e.g., in the Methods section of a journal article). It is poor form to report only the best results. 

• After you have identified the best-performing algorithm and/or hyperparameters, it is usually best to 

test those findings on a completely independent dataset that was not used in the benchmark 

comparison. 

• Merely because an algorithm (or parameter) appears to work well in one setting doesn’t necessarily 

mean that the same will be true in alternate settings. 

Availability of source code and requirements 

• Project name: ShinyLearner 

• Project home page: https://github.com/srp33/ShinyLearner 

• Operating system(s): Any operating system on which Docker can be installed 

• Programming languages: Java, Python, R, bash 

• Other requirements: Docker (https://docker.com) 

• License: MIT 

• DOI of Zenodo archives of GitHub repositories: 10.5281/zenodo.3543724, 

10.5281/zenodo.3543726, 10.5281/zenodo.3543728, 10.5281/zenodo.3543730 

The code for creating the figures in this manuscript can be found and re-executed in a Code Ocean 

capsule[83].  

This tool has been registered at bio.tools (https://bio.tools/ShinyLearner) and at SciCrunch.org (RRID: 

SCR_017608). 
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Availability of Supporting Data 

Archives of the GitHub repositories are available in Zenodo[84, 85, 86, 87]. Snapshots of all of the 

archives are also available in the GigaScience GigaDB repository[88]. 

Editors Note 

A CODECHECK certificate for this paper is available confirming that the figures in the paper could be 

independently reproduced[89]. 

Figure Legends 

Figure 1: Example ShinyLearner command for performing a benchmark comparison. In this 

example, the user wishes to place output files in a directory located at /home/user/OutputData. To avoid 

problems with file permissions, this directory should be created before Docker is executed. The docker 

run command builds a container and maps input and output directories from the host operating system to 

locations within the container (separated by colons). The --user directive indicates that the container 

should execute using the executing user’s permissions. The name of the Docker image and tag name are 

specified (srp33/shinylearner:version511) as well as the name of a ShinyLearner script that performs 

nested, Monte Carlo cross validation (/UserScripts/nestedclassification_montecarlo). The remaining 

arguments indicate the name of the input data file, a description of the analysis, the number of Monte 

Carlo iterations, the classification algorithms, etc. ShinyLearner provides documentation on each of these 

arguments as well as a Web application for building such commands dynamically. 

Figure 2: Classification performance per dataset (default hyperparameters). We evaluated the 

predictive performance of 10 classification algorithms on 10 biomedical datasets. These results were 

generated using default hyperparameters for each algorithm. We measured predictive performance using 
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the receiver operating characteristic curve (AUROC) and calculated the median across 5 Monte Carlo 

iterations. Predictive performance differed considerably across and within the datasets. 

Figure 3: Sample-level predictions for each algorithm on the Diabetes dataset (default 

hyperparameters). The Diabetes dataset includes a class variable indicating whether or not patients 

received a positive diagnosis. Each panel of this figure shows positive-diagnosis predictions for each 

classification algorithm. All algorithms except sklearn/decision_tree produced probabilistic 

predictions. The range and distribution of these predictions differed greatly across the algorithms. 

Figure 4: Classification performance when optimizing vs. not optimizing hyperparameters. We 

tested 10 classification algorithms on 10 biomedical datasets and used nested cross validation to select 

hyperparameters. To evaluate for change in predictive performance, we calculated the percent change in 

the median AUROC values when using optimized vs. default hyperparameters. Most algorithms 

demonstrated improved classification performance with optimized hyperparameters. 

Figure 5: Classification performance when performing feature selection vs. not performing feature 

selection. In combination with classification, we performed feature selection via nested cross validation 

on 10 biomedical datasets. For each algorithm, we used default hyperparameters. These plots show the 

percent change in the median AUROC when using vs. not using feature selection. Although the effects of 

feature selection varied across the algorithms, median AUROCs increased in many cases. 

Figure 6: Performance for each combination of classification and feature-selection algorithm. This 

figure shows classification results for the nested cross-validation folds across each combination of 

feature-selection algorithm and classification algorithm. Averaged across all datasets and classification 

algorithms, we ranked the feature-selection algorithms based on AUROC values attained for nested 

validation sets. For simplicity and consistency across the datasets, this figure shows only the results when 

the top-5 features were used. Higher average ranks indicate better classification performance. 
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Figure 7: Median classification performance of feature-selection algorithms by number of features. 

We applied feature selection to each dataset, in combination with each of the 10 classification algorithms. 

For each algorithm, we selected the top x number of features and averaged across each combination of 

feature-selection and classification algorithm. This figure shows which values of x resulted in the highest 

AUROC values for each dataset. Different datasets had different quantities of features; this graph only 

shows results for x values relevant to each dataset. Accordingly, we scaled the AUROC values in each 

column between zero and one to ensure that the comparisons were consistent across all datasets. Higher 

values indicate better classification performance. Generally, a larger number of features resulted in better 

classification performance, but this varied across the datasets. 
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mkdir -p "/home/user/OutputData"

docker run --rm -i \
  -v "/home/user/InputData":"/InputData" \
  -v "/home/user/OutputData":"/OutputData" \
  --user $(id -u):$(id -g) \
  srp33/shinylearner:version511 \
  /UserScripts/nestedclassification_montecarlo \
    --data "data.tsv" \
    --description "My_Analysis_Description" \
    --outer-iterations 10 \
    --inner-iterations 5 \
    --classif-algo "/AlgorithmScripts/Classification/tsv/keras/dnn/*" \
    --classif-algo "/AlgorithmScripts/Classification/tsv/mlr/h2o.randomForest/*" \
    --classif-algo "/AlgorithmScripts/Classification/tsv/mlr/xgboost/*" \
    --classif-algo "/AlgorithmScripts/Classification/tsv/sklearn/svm/*" \
    --seed 1 \
    --ohe true \
    --scale true \
    --impute false
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DEPARTMENT OF BIOLOGY  
 

Dear Scott Edmunds, Ph.D.: 
 
Thank you for overseeing the review of our manuscript entitled, "​ShinyLearner: A containerized 
benchmarking tool for machine-learning classification​." We suggest this manuscript as a ​Technical Note​, 
but we are flexible on the format. 
 
We have registered ShinyLearner at bio.tools (​https://bio.tools/ShinyLearner​; ID: biotools:ShinyLearner) 
and at SciCrunch.org (RRID: SCR_017608). We mention this in the manuscript. 
 
We have also provided a point-by-point response to the reviewers. The revised manuscript conforms to 
the journal style. 
 
Warm regards, 
 

 
 
Stephen R. Piccolo, PhD 
Assistant Professor 
Department of Biology 
Brigham Young University 
(801) 422-7116 
Stephen_Piccolo@byu.edu 
 
 
Reviewer #1: The manuscript by Piccolo et al presents a new tool for comparing 
classification algorithms in a consistent interface.  A key strength 
of the current approach is that it uses Docker containers so that once 
a user has installed Docker, a wide variety of algorithms from 
different machine learning toolboxes can be compared.  The typical 
user for this package would be someone new to machine learning wishing 
to compare a wide range of algorithms on their data. 
 
Thank you for taking the time to write this review and for providing this positive feedback! 
 
I am grateful to the authors for providing online resources; in 
particular the Code-Ocean capsule worked for me (after first logging 
in; presumably anonymous access is not possible), and all the figures 
from the manuscript were regenerated from the analysis results.  (But 
if the online Rmd is to be updated, the output figures could be made 
taller as some of the y-axes were too squashed to see the range of 
data, e.g. I could not see the negative, red, differences for Figure 5 
online). 
 

BRIGHAM YOUNG UNIVERSITY – 4102 LSB – PROVO, UTAH 84602 
(801) 422-2582 / FAX: (801) 422-0004 

Personal Cover Click here to access/download;Personal
Cover;Gigascience_Response_to_Reviewers.pdf
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Yes, as far as we understand it, anonymous access is not possible via Code Ocean. Thank you for the 
feedback about some of the figures being squashed. This is true for the HTML output file, produced 
from the Rmd file. However, we don't know of a way to control those dimensions. If you look at the 
right-hand panel of the output in Code Ocean, you should be able to see PDF files that are generated 
from the R code. The names of those files coincide with names specified in the Rmd file, so you should 
be able to match those and see what they look like in the correct dimensions. 
 
What I couldn't do however, was to re-run the analysis. 
https://github.com/srp33/ShinyLearner/blob/master/Demo/Execute_Algorithms.ipynb 
lists the script, and it looks appropriate, but as I'm already late 
with this review, I'll have to assume it works.  (How long does it 
take to execute?)  Could it also be hosted on CODE OCEAN, or would it 
take too long? 
 
It takes several days for this to execute. Although Code Ocean does not put hard limits on execution 
times, it's not really designed for such long-running executions. 
 
The text from 
https://github.com/srp33/ShinyLearner/blob/master/Word_of_Caution.md 
is important and should be copied into the discussion section of the 
paper. 
 
Thank you for this suggestion. We have added a slightly modified version of this text to the end of the 
Discussion section in our manuscript. 
 
Although all the code is available on github, I think an archive of 
the github repo should be stored on Zenodo to give a permanent DOI of 
the repository when (assuming) the manuscript is published. 
 
We have created Zenodo archives of the relevant GitHub repositories for this tool and have added the 
DOI for these archives to the manuscript under "Availability of source code and requirements". 
 
The online tool http://bioapps.byu.edu/shinylearner/ looks great, but 
again due to being late with this review, I didn't get time to run it 
yet for myself.  It would of course help for the very first time that 
there is a demo where I could download some data first (e.g. the Iris 
dataset, or MNIST) to work through this.  Am I right in assuming that 
the role of the GUI is to build the eventual docker command to then be 
run locally? 
 
You are correct that the role of the GUI is to build the eventual Docker command, which would be run 
locally. The GUI provides a link to a page on our GitHub site 
(​https://github.com/srp33/ShinyLearner/blob/master/InputFormats.md​), which describes input 
formats that can be used and provides example data files. 
 
Minor: 
 
I found it confusing to constantly flip between the main and 

https://github.com/srp33/ShinyLearner/blob/master/InputFormats.md


supplementary figures.  If a figure is important, please could it be 
folded into the main document?  The first figure reference is on line 
104, and that is to S1 (showing the docker command line invocation), 
rather than Figure 1 of the paper. 
 
In the main part of the manuscript, we included what we thought would be figures that are most 
interesting to readers and relegated the remaining figures to the supplementary material. It just 
happened that the first figure we referenced was a supplementary figure, but the order in which the 
figures are mentioned does not necessarily indicate the figure's importance (as with any paper). 
Having said that, we can see the value in including the first supplementary figure in the main body, 
and we have made that change. When submitting our updated manuscript, we have uploaded the 
figures as separate files. 
 
line 42: SUPPORT --> REQUIRE 
 
This change has been made. 
 
Is figure 2 required?  It was obvious from figure 1 (to me at least) 
that the HoeffdingTree and decision_tree algorithms were lagging 
behind the others. 
 
This figure has been moved to the Supplementary Material. We feel that it will be useful to some 
readers, even though it overlaps somewhat with the other figure. 
 
lines 281-284: You show here that there are a few differences between 
algorithms that should be working the same.  Did you explore why there 
were small differences?  Parameter settings or initialisation methods? 
(I'm not surprised there are small differences, but thought you could 
explain them.) 
 
We have added the following text for clarification: "For both of these algorithms, the available 
hyperparameters as well as options that users can select are considerably different between the 
underlying machine-learning libraries." 
 
Figure 7: what classifier was used to do this analysis? 
 
We have revised the caption for this figure to indicate that all 10 classification algorithms were used 
and that we averaged the results across these. 
 
In the discussion, (line 389-396), six reasons supporting use of 
ShinyLearner are presented.  I am convinced of the first two reasons, 
but I think most competent programmers would feel that they could also 
investigate points 3--6 in their own environment.  Unless of course 
you are arguing that only ShinyLearner provides the wide diversity of 
algorithms that is absent in one environment (like R or Python). 
However, if you are to make this case, I think you need to point out 
specific examples of e.g. what classes of methods (rather than 
implementations) are missing e.g. in R or Python.  My hunch, but happy 



to be proven wrong, is that R and Python each provide pretty much 
close to a full toolkit of machine learning methods. 
 
To address these questions, we have added the following statement to the manuscript: "Although 
many of these tasks could be performed by a researcher who has programming expertise, care must 
be taken to ensure that the steps are performed in a robust manner (e.g., not mixing training and test 
sets in nested validation). In addition, we hope ShinyLearner will increase the efficiency of such 
benchmark studies by reducing duplicate efforts." 
 
Figure S1: it looks like you are punching holes from Docker into the 
user's directory.  I think you need to explain any potential security 
risks here. 
 
This should not be a security concern. To share data between the host operating system and the 
container, the user executing the container must have permission to read and write data in the host 
directories. Using commands such as those recommended by our GUI will ensure that the container 
can only read/write files for which the user has permission. There are other potential security 
concerns with Docker, but we feel that a discussion of those topics is outside the scope of this 
manuscript. 
 
Figure S2: explain vertical dotted lines in legend. 
 
We have added this to the caption. 
 
Figure S3 (and S4): Are the Coefficients of Variation simply (s.d. / mean) or 
have they been multiplied by 100 to be a percentage? 
 
The Coefficient of Variation is often expressed as a percentage in academic papers. We have modified 
the figure captions to clarify that these are percentages. 
 
Figure S8: what does color denote? 
 
We have clarified this in the caption. 
 
Figure S10: Took me a while to work out the three coloured curves are 
for the three patients; perhaps rework last sentence of legend to make 
this clearer. 
 
We have clarified this in the caption. 
 
The word "Shiny" in the title should be explained somewhere to refer 
to the Shiny R package for making GUIs. 
 
We have modified the text to explain this. 
 
Stephen Eglen 
 
 



 
Reviewer #2: The authors present a very compelling tool that allows researchers to compare and 
benchmark algorithms across various packages regardless of their design. Shinylearner also provides a 
simple web interface that allows users to easily generate Docker commands that anyone can execute 
(assuming they have a basic knowledge of Docker). 
 
I found the rationale of the paper to be very clear and coherent. The authors make a clear case for the 
need for benchmarking, especially when comparing disparate algorithms and their various software 
implementations, especially from the lens of applying supervised learning to biomedical studies. 
 
ShinyLearner is modular and extensive, and language agnostic, making it widely useful to a broad 
community of researchers. It also allows for diverse inputs and standardizes outputs. By running all 
benchmarks inside a container, it removes the challenges of dealing with complex dependencies, 
especially for users that may not be technically savvy, all the while not building out a black box. It 
supports a large number of classification algorithms, has gpu support and is already set up to be 
sustainable. 
 
We thank the reviewer for these positive and encouraging comments! 


